Introduction to using the netCDF data format with Fortran 90
Michael Thorne (michael.thorne@utah.edu)
Last Updated: July 20, 2010

I. Introduction
NetCDF — Network Common Data Form

NetCDF is an array based data structure for storing multidimensional data. A netCDF file is written
with an ASCII header and stores the data in a binary format. The space saved by writing binary files is
an obvious advantage, particularly because one does not need worry about the byte order. Any byte-
swapping is automatically handled by the netCDF libraries and a netCDF binary file can thus be read
on any platform. Some features associated with using the netCDF data format are as follows:

Coordinate systems: support for N-dimensional coordinate systems.
X-coordinate (e.g., lat)

Y-coordinate (e.g., lon)

Z-coordinate (e.g., elevation)

Time dimension

Other dimensions

Variables: Support for multiple variables.
e E.g., S-wave velocity, P-wave velocity, density, stress components...

Geometry: Support for a variety of grid types (implicit or explicit).
e Regular grid (implicit)
e lrregular grid
e Points

Self-Describing: Dataset can include information defining the data it contains.
e Units (e.g., km, m/sec, gm/cm?,...)
e Comments (e.g., titles, conventions used, names of variables (e.g., P-wave velocity), names of
coordinates (e.g., km/sec),...

Full documentation on the data format can be found at:

e http://www.unidata.ucar.edu/software/netcdf/ - netCDF webpage

e http://www.unidata.ucar.edu/software/netcdf/docs/ - Full netCDF documentation

e http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-fo0/ - F90 Interface guide

Naming convention: NetCDF files are generally named with the .nc extension.

Fortran 90 netCDF introduction

File conventions: There are many different flavors or conventions of netCDF data. In seismology the
example most people are familiar with are the .grd files produced with the Generic Mapping Tools
(http://gmt.soest.hawaii.edu/). Writing netCDF files to use with GMT requires using the COARDS
(“Cooperative Ocean/Atmosphere Research Data Service”) data convention. The specifics of this
convention can be found at: http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf profile.html.

One of the specific reasons | have started using netCDF files is that the grid information can also be
stored along with the data. Hence when using a program like GMT | don’t explicitly have to write an
xyz2grd command to plot the data or try to remember for the particular file I am plotting what the
Range (-R option in GMT) or grid increment (-1 option) are. However, when using the COARDS
convention one is limited to rectilinear coordinate systems. The coordinates do not have to be evenly
spaced, but must at least be either monotonically increasing or decreasing. Unfortunately GMT cannot
handle irregularly spaced grids without preconditioning the data with a command like blockmean.

Visualization: Another obvious advantage of using the netCDF format is that a variety of data viewers
already exist. Additionally nearly all visualization packages that I am familiar with read the netCDF
format. Some popular free viewers or visualization packages are:

e Ncview - http://meteora.ucsd.edu/~pierce/ncview home page.html

e Data Explorer (OpenDX) - http://www.opendx.org/

Il. File Structure
A netCDF file contains the following structures.

NetCDF file contains:

Global Attributes: Describe the contents of the file.

Dimensions: Define the structure of the data (e.g., time, depth, lat, lon).
Variables: Holds the data in arrays shaped by dimensions

Variable Attributes: Describes the content of each variable.

1. Compiling and Linking

The examples shown are using the flags available with the g95 compiler. In order to use netCDF with
90 you need to have the f90 netcdf module installed. This module should be located in your netCDF
installation directory under: include/netcdf.mod. If this module isn't there you may need to reinstall
netCDF.

To compile a module with subroutines that uses netcdf calls. A possible module file will have the
following setup:

Fortran 90 netCDF introduction

MODULE example
CONTAINS

SUBROUTINE subl()
USE netcdf

IMPLICIT NONE

END SUBROUTINE subl

END MODULE example

As shown in this example, you must make the netCDF subroutines available to your subroutine by the
USE netcdf statement.

If this module is called example.f90 then it can be compiled by:

>> g95 -c example.fo0 -1 /include

Where is a shell variable providing the path to the netCDF installation. The -I option in
g95 tells the compiler where to look for the netcdf.mod module.

Compiling and linking a program (e.g., 'main.fo0") to the pre-compiled example.o module from above
is then done by:

>> g95 main.f90 -0 main.x ./example.o -L /lib -Inetcdf

Where the -L and -I options must be specified (for g95 - see compiler specific flags) if the netCDF
libraries are not already in your path.

V. Utilities

NetCDF comes with a couple of useful utilities that should be located in the bin/ directory of your
netCDF installation.

ncdump: generate an ASCII representation of a specified netCDF file to standard output.

To just show the header information:

>> ncdump —h Ffilename.nc

ncgen: this can be used to generate a netCDF file.

Fortran 90 netCDF introduction

V. Example - Reading a netCDF file with F90

To read a netCDF file into a f90 program when you have no information about the size or names of the
variables, the order of the library calls to use is as follows:

NF90_OPEN I open existing netCDF dataset
NFOO0_INQUIRE I find out what is in it
NFOO_INQUIRE_DIMENSION I get dimension names, lengths
NFOO0_INQUIRE_VARIABLE I get variable names, types, shapes
NFOO_INQ_ATTNAME I get attribute names
NFO0_INQUIRE_ATTRIBUTE I get other attribute information
NFOO_GET_ATT I get attribute values
NFO0_GET_VAR I get values of variables
NF90_CLOSE I close netCDF dataset

As an example, consider reading a 2D GMT grid file into a F90 program. The first thing | want to do
in my program is determine the size of the grid. | can accomplish this by making a call to the supplied
subroutine griddims...

CALL griddims(infile,NX,NY)

Where infile is the name of the netCDF file | want to read in and NX and NY are integers that will hold
the size of the grid file.

IGRIDDIMS - Get dimensions of a netCDF 2D gridfile

SUBROUTINE griddims(infile,NX,NY)

USE netcdf

IMPLICIT NONE

INTEGER(KIND=4), INTENT(OUT) :: NX, NY
INTEGER(KIND=4) :: ncid
CHARACTER(LEN=50), INTENTCIN) :: infile
CHARACTER(LEN=50) :: xname, yname

Fortran 90 netCDF introduction

10pen netCDF file
e e e e T e e :

CALL check(nf90_open(infile, nf90_nowrite, ncid))

TInquire about the dimensions
| [e e e e e e -

CALL check(nf90_inquire_dimension(ncid,1l,xname,NX))
CALL check(nf90_inquire_dimension(ncid,2,yname,NY))

IClose netCDF file
Il I I - I e e :

CALL check(nT90_close(ncid))

END SUBROUTINE griddims

Now that | have my grid dimensions | can allocate an array to hold the data:

(indata(NX,NY))
(xpos(NX))
(ypos(NY))

Where | will put the data in the array indata, and the X- and Y- grid locations in the arrays xpos and
ypos respectively. And now I can make a subroutine call to readgrid to get the data out of the netCDF
file.

CALL readgrid(infile,xpos,ypos, indata,NX,NY)

Now you can do whatever you want with the netCDF data! Of special note though, the subroutine
provided in this example is not completely generalized. One can write routines to read in completely
generic netCDF files. In this example, | know that | am reading a 2D grid, and that the x-coordinate
positions are written to the first variable, the y-coordinate positions are written to the second variable,
and the array data is written to the third variable.

Fortran 90 netCDF introduction

TREADGRID - read a netCDF gridfile

SUBROUTINE readgrid(infile,xpos,ypos, idata,NX,NY)
USE netcdf

IMPLICIT NONE

REAL(KIND=4), DIMENSION(NX), INTENT(OUT) :: xpos
REAL(KIND=4), DIMENSION(NY), INTENT(OUT) :: ypos
REAL(KIND=4), DIMENSION(NX,NY), INTENT(OUT) :: idata
INTEGER(KIND=4), INTENTCIN) :: NX, NY
INTEGER(KIND=4), DIMENSION(2) :: dimids
INTEGER(KIND=4) :: ncid, xtype, ndims, varid
CHARACTER(LEN=50), INTENT(IN) :: infile
CHARACTER(LEN=50) :: xname, yname, vname

10pen netCDF fTile
| [e —————— e ————— e —————— e ————— T ——————— e ————— ——————— =

CALL check(nf90_open(infile, nf90 nowrite, ncid))
IGet the values of the coordinates and put them in Xpos & ypos

CALL check(nf90_inquire_variable(ncid,1,vname,xtype,ndims,dimids))
CALL check(nf90_ing_varid(ncid,vname,varid))
CALL check(nf90_get var(ncid,varid,Xxpos))

CALL check(nf90_inquire_variable(ncid,2,vname,xtype,ndims,dimids))
CALL check(nf90_ing_varid(ncid,vname,varid))
CALL check(nf90_get var(ncid,varid,ypos))

1Get the values of the perturbations and put them in i1data

CALL check(nf90_inquire_variable(ncid,3,vname,xtype,ndims,dimids))
CALL check(nf90_ing_varid(ncid,vname,varid))

CALL check(nf90 _get var(ncid,varid, idata))

IClose netCDF file
L lm—————— lem—————— lem—————— lem—————— lem—————— lem—————— lem—————— :

CALL check(nf90_close(ncid))

END SUBROUTINE readgrid

Fortran 90 netCDF introduction

The subroutine readgrid utilizes the subroutine check, which will return a netCDF error and stop
execution of the code if netCDF encounters an error.

ICheck (ever so slightly modified from www.unidata.ucar.edu)

SUBROUTINE check(istatus)

USE netcdf

IMPLICIT NONE

INTEGER, INTENT (IN) :: istatus

IF (istatus /= nf90_noerr) THEN

write(™,”*) TRIMCADJUSTL(NT90_strerror(istatus)))
END IF

END SUBROUTINE check

V1. Example - Writing a netCDF file with F90

To write a netCDF file from a F90 program the order of the library calls to use is as follows:

NF90_CREATE create netCDF dataset: enter define mode

NF90_DEF_DIM

define dimensions: from name and length

NF90_DEF_VAR

define variables: from name, type, dims
NFOO PUT_ATT I assign attribute values

NF90_ENDDEF end definitions: leave define mode

NF90_PUT_VAR

provide values for variable

NF90_CLOSE close: save new netCDF dataset

In the following example | show a simple way to write a 2D array of data into a netCDF file. Here is an
example where | just make up a cosine variation on a globe:

Fortran 90 netCDF introduction

PROGRAM ex

IMPLICIT NONE

REAL(KIND=4), DIMENSION(:,:), ALLOCATABLE :: mydata
REAL(KIND=4), DIMENSION(:), ALLOCATABLE :: Xpos, ypos
REAL(KIND=4) :: X, VY

INTEGER(KIND=4) :: NX

INTEGER(KIND=4) :: NY

INTEGER(KIND=4) :: J, K

CHARACTER(LEN=50) :: outfile

outfile "exl.nc"
NX 360
NY 180

(mydata(NX,NY))
(xpos(NX))
(ypos(NY))

TPopulate X and Y grid locations
X = -179.0

DO J=1,NX

xpos(J) = x

X =x+1.0

ENDDO

y = -90.0
DO J=1,NY
ypos(d) =y
y=y+1.0
ENDDO

Imake up some data
DO J=1,NX
X = xpos(J)
DO K=1,NY
y = ypos(K)

mydata(Jd,K) = cos(sgrt(x*x+y*y)/10.0)

ENDDO
ENDDO

Iwrite netCDF fTile
CALL writegrid(outfile,xpos,ypos,mydata,NX,NY)

END PROGRAM ex

This program uses the following writegrid subroutine:

Fortran 90 netCDF introduction

IWRITEGRID - write a netCDF gridfile

SUBROUTINE writegrid(outfile,xpos,ypos, idata,NX,NY)
USE netcdf

IMPLICIT NONE

REAL(KIND=4), DIMENSION(NX), INTENT(IN) :: xpos
REAL(KIND=4), DIMENSION(NY), INTENT(IN) :: ypos
REAL(KIND=4), DIMENSION(NX,NY), INTENT(IN) :: idata
INTEGER(KIND=4) :: ncid, x_dimid, y dimid
INTEGER(KIND=4) :: x_varid, y varid, varid
INTEGER(KIND=4), DIMENSION(2) :: dimids
INTEGER(KIND=4), INTENTCIN) :: NX, NY
CHARACTER(LEN=50), INTENT(CIN) :: outfile

ICreate the netCDF file.
CALL check(nf90_create(outfile, NF90_CLOBBER, ncid))

IDefine the dimensions.
CALL check(nf90_def _dim(ncid, "lon", NX, x_dimid))
CALL check(nf90_def dim(ncid, "lat"”, NY, y dimid))

IDefine coordinate variables

CALL check(nf90_def _var(ncid, "lon", NF90_REAL, x dimid, x varid))
CALL check(nf90_def var(ncid, "lat”, NF90_REAL, y dimid, y varid))
dimids = (/ x_dimid, y_dimid /)

IDefine variable
CALL check(nf90_def var(ncid, "Perturbations', NF90_ FLOAT, dimids, varid))
CALL check(nf90_enddef(ncid)) !End Definitions

IWrite Data

CALL check(nf90_put var(ncid, x_varid, Xpos))
CALL check(nf90 _put var(ncid, y varid, ypos))
CALL check(nf90_put_var(ncid, varid, idata))
CALL check(nf90_close(ncid))

END SUBROUTINE writegrid

Fortran 90 netCDF introduction

VI1l. Example — Adding units and other attributes

Units and other attributes are easily added to a netCDF file. There are some standard attributes that can
be added. A list of these standard attributes is given at:
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-fo0/Attribute-Conventions.html#Attribute-
Conventions

A couple of the most useful attributes are:

A few standard attributes:

long_name A long descriptive name. This could be used for labeling plots, for example.

valid_min A scalar specifying the minimum valid value for this variable.

valid_max A scalar specifying the maximum valid value for this variable.

title A global attribute that is a character array providing a succinct description of what is in the
dataset.

history A global attribute for an audit trail. This is a character array with a line for each invocation of a

program that has modified the dataset.

Here | show a brief example of how to go about doing this. The first steps of opening a file and
making the definitions are done as in the example of the previous section:

ICreate the netCDF file.
CALL check(nf90_create(outfile, NF90_CLOBBER, ncid))

IDefine the dimensions.
CALL check(nf90 _def dim(ncid, "lon", NX, x dimid))
CALL check(nf90_def _dim(ncid, "lat™, NY, y _dimid))

IDefine coordinate variables
CALL check(nf90 _def var(ncid, "lon", NF90 REAL, x _dimid, X varid))
CALL check(nf90_def _var(ncid, "lat”, NFOO_REAL, y dimid, y_ varid))

Now we can add units for the coordinate variables

CALL check(nf90_put_att(ncid, x_varid, ~units”, “deg”))
CALL check(nf90_put_att(ncid, y_varid, “units”, “deg”))

Next we define our data array:
dimids = (/ x_dimid, y dimid /)

IDefine variable
CALL check(nf90_def var(ncid, "Perturbations', NF90_ FLOAT, dimids, varid))

And now we can add units to the data array:

Fortran 90 netCDF introduction

CALL check(nf90 put att(ncid, varid, “units”, “dVs %))

Besides units we can add any other type of attribute we like. Some conventions have named attributes
which individual software packages will understand — e.g., the “units” attribute given above is standard.
But, we can add anything we like. For example, in this example I may have used a special kind of
function, e.g., a Matern function, to create to the perturbations that | want to document in the file. I can
add this by:

CALL check(nf90 put att(ncid, varid, “Function_Type”, “Matern’))

We can also add global attributes such as a title where instead of giving a variable ID we use the
F90_GLOBAL specifier:

CALL check(nf90_put_att(ncid,NF90_GLOBAL, “title”, “Realization by KL
Expansion’))

Now that | am done adding attributes | must end the definining stage:

CALL check(nf90_enddef(ncid)) !End Definitions

And now | can write the data:

IWrite Data

CALL check(nf90_put_var(ncid, x_varid, Xpos))
CALL check(nf90_put var(ncid, y varid, ypos))
CALL check(nf90 put var(ncid, varid, i1data))
CALL check(nT90_close(ncid))

VIIIl. Example — Irregularly spaced data

There is no real standard for handling irregularly spaced data. However, some conventions have been
defined for specific packages. Here | show how to write irregularly spaced data into a format that can
be read by OpenDX.

Here is a sample program to generate some test data on an irregular grid:

PROGRAM ex
(4y, (:.:2), I positions
(4), (), I mydata
(4) 2 X, VY
(4) :: NX, NY, naxes
(4) = J

(50) :: outfile

Fortran 90 netCDF introduction

outfile "exl.nc"

NX 2
NY 2
naxes 2

ALLOCATE(mydata(NX*NY))
ALLOCATE(positions(naxes,NX*NY))

positions(1:2,1) = (/0.0, 0.0/)
positions(1:2,2) = (/0.0, 0.2/)
positions(1:2,3) = (/0.3, 0.5/)
positions(1:2,4) = (/0.4, 0.9/)
DO J=1,NX*NY

X = positions(1,J)

y = positions(2,J)

mydata(Jd) = ((X*x+y*y)/10.0)
ENDDO

Iwrite netCDF fTile
CALL wirrgrid(outfile,positions,mydata,NX*NY,naxes)

END PROGRAM ex

The grid positions are stored in an array, where each line of the array gives the x, and y coordinate (and
z, etc. if appropriate) for each data value in the vector mydata.

The accompanying subroutine to write the netCDF file is:

IWIRRGRID - write a netCDF gridfile

SUBROUTINE wirrgrid(outfile,positions, idata,pointnums,axes)
USE netcdf

(4), (axes,pointnums), (IN) :=: positions
(4), (pointnums), (IN) :: i1data

(4) :: ncid, x_dimid, y_dimid, d_dimid

(4) :: x varid, y varid, varid

(1), (2) :: dimids

(4), (IN) :: pointnums, axes

(4y - J, K, c

(50), (IN) :: outfile

Fortran 90 netCDF introduction

ICreate the netCDF file.
CALL check(nf90_create(outfile, NF90_CLOBBER, ncid))

IDefine the dimensions.
CALL check(nf90_def _dim(ncid, "pointnums'™, pointnums, x_dimid))
CALL check(nf90 _def dim(ncid, "axes"™, axes, y _dimid))

IDimension ID"s
dimids (/ y_dimid, x_ dimid /)

IDefine coordinate variables
CALL check(nf90_def var(ncid, "grid", NF90_FLOAT, dimids, X varid))

IDefine data variable
CALL check(nf90_def var(ncid, "Perturbations'™, NF90_FLOAT, x _dimid, varid))

TAdd attributes

CALL check(nf90_put_att(ncid,varid,'units”,” %))

CALL check(nf90 put_att(ncid,varid, field","Perturbations, vector™))
CALL check(nf90 put att(ncid,varid, positions™, " grid™))

CALL check(nf90_enddef(ncid)) !End Definitions
IWrite Data

CALL check(nf90_put_var(ncid, x_varid, positions))
CALL check(nf90_put_var(ncid, varid, idata))

CALL check(nf90_close(ncid))

END SUBROUTINE wirrgrid

In this example, using OpenDX, the variable with our data, Perturbations, must have the field and
positions attribute set as above so OpenDX knows where to look for the grid positions.

IX. Reading netCDF with Matlab

To read netCDF files into matlab a couple collections of m-files are required. The first is the CSIRO
netCDF/OPeNDAP interface to matlab. These are just a collection of m-files which can be obtained
from: http://www.marine.csiro.au/sw/matlab-netcdf.html#installation

To use them you should grab them (cp —r) and add them to your matlab search path, e.g.,
in matlab:

>> addpath /home/mthorne/applications/matlab/mfiles/matlab_netCDF_OPeNDAP/

You also need the mexnc netCDF mexfiles. These can be grabbed at
http://mexcdf.sourceforge.net/downloads

Fortran 90 netCDF introduction

As above you just need to add these to your search path.

Now once in matlab you can simply read a netCDF file by:

>> mydata = getnc(“foo.nc?”);

This will interactively prompt you for which variable you want. If e.g., foo.nc contains a 2-D grid file

written in a matrix, you can return this data into the variable mydata and then start to do work on it,
e.g., imagesc(mydata).

Fortran 90 netCDF introduction

